Séance du lundi 18 mai

- 1. Vous trouverez ci-dessous la correction des exercices donnés jeudi.
- Recopier la suite de la leçon.
- Faire et ENVOYER les exercices ci-dessous. Ne pas oublier que les exercices se font en utilisant la leçon.

Correction

Exercice 1

La droite (d) passe par le point A(-2 ; 2) et elle coupe l'axe des abscisses au point B d'abscisse 3. Déterminer une équation de la droite (d).

- La droite coupe l'axe des abscisses au point B d'abscisse 3. Le point B se trouve sur l'axe des abscisses. D'où B(3; 0).
- ¤ (d) passe par A(-2; 2) et B(3; 0).

 $x_A \neq x_B$: (d) n'est pas parallèle à l'axe des ordonnées. Elle a une équation réduite de la forme y= mx+p.

$$m = \frac{2-0}{-2-3} = \frac{2}{-5}$$

 $\frac{z}{m}$ m= $\frac{2-0}{-2-3}$ = $\frac{2}{-5}$ L'équation réduite est de la forme y= $\frac{-2}{5}$ x+p.

 $^{\mathbf{Z}}$ B(3; 0) est un point de (d). Alors, $y_B = \frac{-2}{5} x_B + p$.

$$0 = \frac{-2}{5} \times 3 + p$$

$$0 = \frac{-6}{5} + p$$

$$\frac{6}{5} = p$$

Donc, l'équation réduite de (d) est $y = \frac{-2}{5}x + \frac{6}{5}$

Exercice 2

On considère deux droites (d) et (d').

(d):
$$-x + 2y - 5 = 0$$

(d') passe par
$$C(-3; -2)$$
 et $D(3; 1)$

Etudier la position des droites (d) et (d').

$$\frac{\mathbf{z}}{\mathbf{z}}$$
 (d): $-\mathbf{x} + 2\mathbf{y} - 5 = 0$. $\mathbf{a} = -1$ $\mathbf{b} = 2$ $\mathbf{c} = -5$

Un vecteur directeur \vec{u} a pour coordonnées $\begin{pmatrix} -2 \\ -1 \end{pmatrix}$.

 $^{\mathbf{z}}$ Un vecteur directeur de (d') est \overrightarrow{CD} .

$$\overrightarrow{CD}\begin{pmatrix} 3+3\\1+2\end{pmatrix}$$

$$\overrightarrow{CD}\begin{pmatrix} 6\\3 \end{pmatrix}$$

 $\mathbf{z} \det(\vec{u}, \vec{CD}) = \begin{vmatrix} -2 & 6 \\ -1 & 3 \end{vmatrix} = -2 \times 3 + 1 \times 6 = 0$. Les vecteurs \vec{u} et \vec{CD} sont colinéaires.

D'où (d) et (d') sont parallèles.

Vérifions si les droites sont confondues ou pas. Regardons si le point C est un point de (d).

$$-x_{c} + 2y_{c} - 5 = 3 + 2 \times (-2) - 5 = 3 - 4 - 5 = -6 \neq 0$$

C n'appartient pas à (d).

Finalement, (d) et (d') sont strictement parallèles.

Exercice 3

Déterminer l'équation réduite de la droite (d') parallèle à la droite (d) et passant par A.

(d):
$$y = -2x + 7$$
 A(4; 1)

(d) et (d') sont parallèles. Elles ont le même coefficient directeur.

Or, (d) a pour coefficient directeur -2, (d') aussi.

L'équation réduite de (d') est de la forme y = -2x + p.

 $^{\mathbf{Z}}$ A(4; 1) est un point de (d'). Alors, $y_A = -2x_A + p$.

$$1 = -2 \times 4 + p$$

$$1 = -8 + p$$

$$1 + 8 = p$$

$$p = 9$$

Donc, l'équation réduite de (d') est y = -2x + 9.

Exercice 4

Déterminer les coordonnées du point d'intersection de la droite (d) avec l'axe des ordonnées.

(d):
$$2y - 3x + 4 = 0$$

A est le point d'intersection de la droite (d) avec l'axe des ordonnées. A se trouve sur l'axe des ordonnées et A(0; y_A).

 $^{\square}$ A(0; y_A) est un point de (d). Alors, $2y_A - 3x_A + 4 = 0$.

$$2y_A - 3 \times 0 + 4 = 0$$

$$2y_A = -4$$
$$y_A = -2$$

$$v_A = -2$$

Donc, A(0; -2)

Exercices

Exercice 1

(d) est la droite d'équation cartésienne x + y + 2 = 0.

Déterminer une équation cartésienne de la droite (d') parallèle à la droite (d) et passant par A(3 ; -4).

Exercice 2

Résoudre les systèmes.

$$\begin{cases} 5x - 3y - 17 = 0 \\ 2x + y - 9 = 0 \end{cases}$$

$$\begin{cases}
5x - 3y - 17 = 0 \\
2x + y - 9 = 0
\end{cases}$$

$$\begin{cases}
2x - 3y + 1 = 0 \\
-3x + 4y - 2 = 0
\end{cases}$$

V- Systèmes de deux équations à deux inconnues

définitions

- * Un système de deux équations à deux inconnues x et y est la donnée de deux équations $\begin{cases} ax + by + c = 0 \\ a'x + b'y + c' = 0 \end{cases}$ où a, b, c, a', b', c' sont des réels.
- * Résoudre un tel système, c'est trouver les couples de réels (x ; y) qui vérifient les deux équations en même temps.

exemple

$$\begin{cases} x+y-4=0\\ 2x-y-5=0 \end{cases}$$

¤ Le couple (1; 3) n'est pas solution du système :

$$x+y-4 = 1+3-4 = 0$$

$$2x-y-5 = 2 \times 1-3-5 = -6 \neq 0$$

Le couple (1; 3) ne vérifie pas la 2ème équation.

¤ Le couple (3 ; 1) est une solution du système :

$$x+y-4 = 3+1-4 = 0$$

$$2x-y-5 = 2\times 3-1-5 = 0$$

Le couple (3 ; 1) vérifie les deux équations.

1) Interprétation géométrique

$$\begin{cases} ax+by+c=0 \\ a^{'}x+b^{'}y+c^{'}=0 \end{cases} (a;b) \neq (0;0) \text{ et } (a';b') \neq (0;0)$$

Dans un repère orthonormé, ax + by + c = 0 est une **équation cartésienne d'une droite (d)** et a'x + b'y + c' = 0 est une **équation cartésienne d'une droite (d')**.

Résoudre ce système, c'est déterminer les **coordonnées du point d'intersection éventuel** de ces deux droites.

$$\vec{u} \begin{pmatrix} -b \\ a \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -b' \\ a' \end{pmatrix}$ sont les vecteurs directeurs respectifs de (d) et (d').
$$\det(\vec{u}, \vec{v}) = \begin{vmatrix} -b & -b' \\ a & a' \end{vmatrix} = -b \times a' + a \times b' = ab' - a'b$$

Il y a 3 cas possibles pour l'ensemble S des couples solutions du système :

$\det(\vec{u}, \vec{v}) \neq 0$	$\det(\vec{u}\ ,\ \vec{v})=0$	
$ec{u}$ et $ec{v}$ ne sont pas colinéaires	$ec{u}$ et $ec{v}$ sont colinéaires	
(d) et (d') sont sécantes au point $(x_0; y_0)$	(d) et (d') sont strictement parallèles	(d) et (d') sont confondues
y ₀		
Le système a un seul couple solution $(x_0; y_0)$.	Le système n'a pas de couple solution.	Le système a une infinité de couples solutions.
$S = \{ (x_0; y_0) \}$	S= Ø	

2) Résolution de systèmes par la calcul

Il existe deux méthodes pour résoudre, par le calcul, un système.

Méthode 1 : Par substitution

$$\begin{cases} -2x+3y+2=0 \\ x-2y-3=0 \end{cases}$$

Un vecteur directeur de la 1^{ère} droites est $\vec{u} \begin{pmatrix} -3 \\ -2 \end{pmatrix}$.

Un vecteur directeur de la $2^{\rm ème}$ droites est $\vec{v} {2 \choose 1}$.

$$\det(\vec{u}, \vec{v}) = \begin{vmatrix} -3 & 2 \\ -2 & 1 \end{vmatrix} = -3 \times 1 + 2 \times 2 = -3 + 4 = 1 \neq 0$$

Le système a un seul couple solution.

 $\underline{m\acute{e}thode}$: On observe les équations pour chercher quelle inconnue, x ou y, on va « isoler » dans une des équations (par exemple : un x, un -x, un y ou un -y). On remplace l'inconnue isolée dans l'autre équation.

Donc, le système a un couple solution (-5; -4).

Méthode 2 : Par combinaison

$$\begin{cases} 5x - 3y - 1 = 0 \\ -3x + 4y + 1 = 0 \end{cases}$$

Un vecteur directeur de la 1^{ère} droites est $\vec{u} \begin{pmatrix} 3 \\ 5 \end{pmatrix}$.

Un vecteur directeur de la 2^{ème} droites est $\vec{v} \begin{pmatrix} -4 \\ -3 \end{pmatrix}$.

$$\det(\vec{u}, \vec{v}) = \begin{vmatrix} 3 & -4 \\ 5 & -3 \end{vmatrix} = 3 \times (-3) - 5 \times (-4) = -9 + 20 = 11 \neq 0$$

Le système a un seul couple solution.

Donc, le système a un couple solution $(\frac{1}{11}; -\frac{2}{11})$